Broad Frequency Vibration Energy Harvesting Control Approach Based on the Maximum Power Transfer Theorem
نویسندگان
چکیده
A control law for an electromagnetic vibration energy harvester is derived using the maximum power transfer theorem. Using regenerative electronics, the controller cancels the reactive portion of the harvester’s impedance by eliminating the effect of mechanical inertia and stiffness elements, and the coil’s electrical inductive element. The result is an energy harvester approach that captures more vibrational energy than a passive tuned harvester. It is shown that the controlled system acts like an infinite series of passive harvesters tuned to all frequency components within a certain frequency range. The control approach also avoids the delay and computational overhead of a Fast Fourier Transform as it does not require the explicit calculation of the excitation frequency. An experimental prototype harvester was built and characterized. The prototype’s multi-domain dynamics were modeled using bond-graph techniques, and its behavior as a passive harvester was experimentally validated. The prototype’s behavior under the proposed control method is simulated and compared to the passive case. It is shown that the proposed control method harvests more power for a range of excitation frequencies than the passive harvester.
منابع مشابه
Resonant frequency of mass-loaded membranes for vibration energy harvesting applications
Vibration based energy harvesting has been widely investigated to target ambient vibration sources as a means to generate small amounts of electrical energy. While cantilever-based geometries have been pursued frequently in the literature, here membrane-based geometries for the energy harvesting device is considered, with the effects of an added mass and tension on the effective resonant freque...
متن کاملImproving Power Density of Piezoelectric Vibration-Based Energy Scavengers
Vibration energy harvesting with piezoelectric materials currently generate up to 300 microwatts per cm2, using it to be mooted as an appropriate method of energy harvesting for powering low-power electronics. One of the important problems in bimorph piezoelectric energy harvesting is the generation of the highest power with the lowest weight. In this paper the effect of the shape and geometry ...
متن کاملElectrostatic Energy Harvesting Circuit with DC- DC Convertor for Vibration Power Generation System
This paper presents an interface circuit with power control features for electrostatic vibration energy harvesting. A DC-DC convertor is used to control the output voltage of a diode-based charge pump circuit. Therefore, the maximum and minimum voltage across the variable capacitor of the energy harvester may be adjusted to track the maximum power point of the system. The power conversion funct...
متن کاملAn Investigation into Resonant Frequency of Triangular V-Shaped Cantilever Piezoelectric Vibration Energy Harvester
Power supply is a bottle-neck problem of wireless micro-sensors, especially where the replacement of batteries is impossible or inconvenient. Now piezoelectric material is being used to harvest vibration energy for self-powered sensors. However, the geometry of a piezoelectric cantilever beam will greatly affect its vibration energy harvesting ability. This paper deduces a remarkably precise an...
متن کاملOn energy harvesting from ambient vibration
Future MEMS devices will harvest energy from their environment. One can envisage an autonomous condition monitoring vibration sensor being powered by that same vibration, and transmitting data over a wireless link; inaccessible or hostile environments are obvious areas of application. The base excitation of an elastically mounted magnetic seismic mass moving past a coil, considered previously b...
متن کامل